Stephen S. Bullock

Work Address

Home Address

National Institute of Standards and Technology Building 820, NIST North Room 383 Gaithersburg, MD 20899-0001 USA (301) 975-4793

Sept.

Dr. Stephen Bullock 744 Clopper Road, #31 Gaithersburg, MD 20878 (240) 631-2584

e-mail: Stephen.Bullock@nist.gov

EXPERIENCE

Title/Program	Employer	Years
National Research Council	National Institute of	Summer2003-present
(NRC) Postdoc, mathematics	Standards and Technology	
Term Assistant Professor, mathematics	University of Michigan	Fall2000-Summer2003
Teaching-Research Assistant	Cornell University	Fall98-Spring00
Teaching Assistant	Notre Dame University	1996-97 academic year
Teaching Assistant	Cornell University	Fall94-Spring96

RESEARCH INTERESTS

- quantum circuits models for quantum computing; quantum logic synthesis
 - quantum logic synthesis using exotic KAK metadecompositions arising from globally symmetric geometries $SU(2^n)/K$
 - synthesis with measurement using Hermitian density matrix formalism
- entanglement theory and implications for quantum circuit design

EDUCATION

Degree	University	Awarded	comment
Ph.D.	Cornell University	May, 2000	mathematics, under Birgit Speh
M.A.	Cornell University	August, 1996	differential geometry
B.S.	University of Georgia	June 1994	summa cum laude, Φβκ

MATHEMATICAL SPECIALTIES

Lie Groups, Lie Theory

- Structure theory of real groups, Satake & Vogan diagrams, representation theory
- Locally symmetric Riemannian manifolds

Riemannian geometry and smooth topology

- de Rham cohomology, sheaf cohomology, Lie algebra cohomology, Hodge theory
- nonpositive curvature, esp. locally symmetric Riemannian manifolds

PAPERS & PREPRINTS

- "Stability of Global Entanglement in Thermal States of Spin Chains," joint with Gavin K. Brennen (first author,) http://www.arxiv.org/abs/quant-ph/0406064, to appear in *Physical Review A*.
- "Note on the Khaneja Glaser Decomposition," Quantum Information and Computation, vol. 4, no. 5, 396, (2004).
- "Recognizing Small-Circuit Structure in Two-Qubit Operators," joint with Vivek V. Shende, University of Michigan and Igor L. Markov, U.Michigan E.E.C.S., *Physical Review A* vol. 70, 012310, (2004).
- "On Universal Gate Libraries and Generic Minimal Two-qubit Quantum Circuits," joint with Vivek V. Shende, University of Michigan and Igor L. Markov, U.Michigan E.E.C.S., *Physical Review A* vol. 69, 062321 (2004).
- "Canonical Decompositions of n-qubit Quantum Computations and Concurrence," joint with Gavin K. Brennen, *Journal of Mathematical Physics*, vol. 45(6), 2447, May 2004.
- "Smaller Circuits for Arbitrary n-qubit Diagonal Computations," joint with Igor L. Markov, *Quantum Information and Computation*, vol. 4, no. 1, 027, (2004).
- "An Arbitrary Two-qubit Computation in 23 Elementary Gates," joint with Igor Markov, *Physical Review A* vol. 68(1), 012318, July 2003.
- "Unreduced Gaussian weighted L_2 cohomology of locally symmetric spaces," New York Journal of Mathematics, vol.8, 2002, pp. 241-256.
- "Weighted L_2 cohomology of asymptotically hyperbolic manifolds," New York Journal of Mathematics, vol.7, 2001, pp. 7-15.

DRAFTS

- "Criteria for Exact Qudit Universality," joint with first authors Dianne P. O'Leary, UMd.CP computer science and N.I.S.T. applied math, and Gavin Brennen (div. 842,) http://www.arXiv.org/abs/quant-ph/0407223.
- "QR Factorizations Using a Restricted Set of Rotations," joint with Dianne P. O'Leary, UMd.CP computer science and N.I.S.T. applied math, available at http://math.nist.gov/~SBullock.
- "Time Reversal and *n*-qubit Canonical Decompositions," joint with Gavin K. Brennen, N.I.S.T. atomic physics and joint with Dianne P. O'Leary, UMd.CP computer science and N.I.S.T. applied math, http://www.arXiv.org/abs/quant-ph/0402051.

INVITED TALKS & COMPUTER SCIENCE CONFERENCE PAPERS

Title	Coauthors	Venue	Date
Matrix decompositions	Vivek Shende (a)	2 nd Feynman Festival	August 21, 2004
& quantum circuit design	Igor Markov (a)		
Time-reversal symmetry	Gavin Brennen (p)	UMdCP Quantum Info.	May 4, 2004
and entangled eigenstates	Dianne O'Leary (a)	& Coherence Seminar	
Time-reversal symmetry	Gavin Brennen	NIST QuIBEC	April 21, 2004
and concurrence dynamics	Dianne O'Leary	seminar, radiation physics	
"Entanglement Capacity	Gavin Brennen	SPIE symposium, QC&Iii	April 13, 2004
of <i>n</i> -qubit Quantum Computations"		www.spie.org	
"Finding Small	Igor Markov	SPIE symposium, QC&Iii	April 14, 2004
Two-qubit Circuits"	Vivek Shende	www.spie.org	
Time-reversal and the	Gavin Brennen	NIST QuITaP seminar	March 25, 2004
CCD matrix decomposition	Dianne O'Leary	Math.Comp.Sci.Div.	
KAK decompositions &	-	Cornell Lie	March 5, 2004
entanglement dynamics		Theory seminar	
Gaussian weighted L_2 cohomology	-	Loc.Sym.Space Conf.	Oct. 3, 2003
		M.F.Oberwolfach	
Symmetry Groups of the n-tangle	Gavin Brennen	Institute for	Sept. 8, 2003
and Maximal Concurrence		Defense Analyses, CSS	
"An Arbitrary Two-Qubit Quantum	Igor Markov	Design Automation	July 2003
Computation in 23 gates"		Conf. (www.dac.com)	B.P.A. nominee
Weighted L_2 cohomology	-	AMS midwest section	March 2002
		meeting, d.g. session	

COMPUTER SKILLS

Proficient: \LaTeX 2_{ε} , C++, RedHat Linux, Maple

Familiar: MatLab. html

REFERENCES

Isabel Beichl (superviser)...isabel.beichl@nist.govBirgit Speh (thesis adviser, pure mathematician)...speh@math.cornell.eduDianne O'Leary (applied mathematician)...oleary@cs.umd.eduIgor Markov (computer scientist)...imarkov@eecs.umich.eduBei Lok Hu (physicist)...hub@physics.umd.edu

MISCELLANY

Hobbies: jogging, investing, vegetable gardening.

Languages: English, German

Citizenship: USA